107 research outputs found

    Modeling and Analysis of Effective Ways for Improving the Reliability of Second-hand Products Sold with Warranty

    Get PDF
    Often, customers are uncertain about the performance and durability of the used/second-hand products. The warranties play an important role in reassuring the buyer. Offering the warranty implies that the dealer incurs additional costs to service any claims made by the customers. Reducing warranty costs is an issue of great interest to dealers. One way of improving the reliability and reducing the warranty servicing cost for second-hand items is through actions such as overhaul and upgrade which are carried out by the dealer or a third party. Improving actions allow the dealer to offer better warranty terms and to sell the item at a higher price. This paper deals with two effective approaches (virtual age approach and screening test approach) to decide on the reliability improvement strategies for second-hand products sold under various warranty policies (failure-free, rebate warranty, and a combination of free replacement and lump sum). A numerical example illustrates that from a dealer’s point of view, it is beneficial to carry out an improvement action only if the reduction in the warranty servicing cost is greater than the extra cost incurred due to this improvement action

    Cell morphology governs directional control in swimming bacteria

    Get PDF
    The ability to rapidly detect and track nutrient gradients is key to the ecological success of motile bacteria in aquatic systems. Consequently, bacteria have evolved a number of chemotactic strategies that consist of sequences of straight runs and reorientations. Theoretically, both phases are affected by fluid drag and Brownian motion, which are themselves governed by cell geometry. Here, we experimentally explore the effect of cell length on control of swimming direction. We subjected Escherichia coli to an antibiotic to obtain motile cells of different lengths, and characterized their swimming patterns in a homogeneous medium. As cells elongated, angles between runs became smaller, forcing a change from a run-and-tumble to a run-and-stop/reverse pattern. Our results show that changes in the motility pattern of microorganisms can be induced by simple morphological variation, and raise the possibility that changes in swimming pattern may be triggered by both morphological plasticity and selection on morphology

    Cell death regulation during influenza A virus infection by matrix (M1) protein: a model of viral control over the cellular survival pathway

    Get PDF
    During early infection, viruses activate cellular stress-response proteins such as heat-shock proteins (Hsps) to counteract apoptosis, but later on, they modulate these proteins to stimulate apoptosis for efficient viral dissemination. Hsp70 has been attributed to modulate viral entry, transcription, nuclear translocation and virion formation. It also exerts its anti-apoptotic function by binding to apoptosis protease-activating factor 1 (Apaf-1) and disrupting apoptosome formation. Here, we show that influenza A virus can regulate the anti-apoptotic function of Hsp70 through viral protein M1 (matrix 1). M1 itself did not induce apoptosis, but enhanced the effects of apoptotic inducers. M1-small-interfering RNA inhibits virus-induced apoptosis in cells after either virus infection or overexpression of the M1 protein. M1 binds to Hsp70, which results in reduced interaction between Hsp70 and Apaf-1. In a cell-free system, the M1 protein mediates procaspase-9 activation induced by cytochrome c/deoxyadenosine triphosphate. A study involving deletion mutants confirmed the role of the C-terminus substrate-binding domain (EEVD) of Hsp70 and amino acids 128–165 of M1 for this association. The M1 mutants, which did not co-immunoprecipitate with Hsp70, failed to induce apoptosis. Overall, the study confirms the proapoptotic function of the M1 protein during influenza virus infection

    Respectful leadership:Reducing performance challenges posed by leader role incongruence and gender dissimilarity

    Get PDF
    We investigate how respectful leadership can help overcome the challenges for follower performance that female leaders face when working (especially with male) followers. First, based on role congruity theory, we illustrate the biases faced by female leaders. Second, based on research on gender (dis-)similarity, we propose that these biases should be particularly pronounced when working with a male follower. Finally, we propose that respectful leadership is most conducive to performance in female leader–male follower dyads compared with all other gender configurations. A multi-source field study (N = 214) provides partial support for our hypothesis. While our hypothesized effect was confirmed, respectful leadership seems to be generally effective for female leaders irrespective of follower gender, thus lending greater support in this context to the arguments of role congruity rather than gender dissimilarity

    Characterization of the Proteostasis Roles of Glycerol Accumulation, Protein Degradation and Protein Synthesis during Osmotic Stress in C. elegans

    Get PDF
    Exposure of C. elegans to hypertonic stress-induced water loss causes rapid and widespread cellular protein damage. Survival in hypertonic environments depends critically on the ability of worm cells to detect and degrade misfolded and aggregated proteins. Acclimation of C. elegans to mild hypertonic stress suppresses protein damage and increases survival under more extreme hypertonic conditions. Suppression of protein damage in acclimated worms could be due to 1) accumulation of the chemical chaperone glycerol, 2) upregulation of protein degradation activity, and/or 3) increases in molecular chaperoning capacity of the cell. Glycerol and other chemical chaperones are widely thought to protect proteins from hypertonicity-induced damage. However, protein damage is unaffected by gene mutations that inhibit glycerol accumulation or that cause dramatic constitutive elevation of glycerol levels. Pharmacological or RNAi inhibition of proteasome and lyosome function and measurements of cellular protein degradation activity demonstrated that upregulation of protein degradation mechanisms plays no role in acclimation. Thus, changes in molecular chaperone capacity must be responsible for suppressing protein damage in acclimated worms. Transcriptional changes in chaperone expression have not been detected in C. elegans exposed to hypertonic stress. However, acclimation to mild hypertonicity inhibits protein synthesis 50–70%, which is expected to increase chaperone availability for coping with damage to existing proteins. Consistent with this idea, we found that RNAi silencing of essential translational components or acute exposure to cycloheximide results in a 50–80% suppression of hypertonicity-induced aggregation of polyglutamine-YFP (Q35::YFP). Dietary changes that increase protein production also increase Q35::YFP aggregation 70–180%. Our results demonstrate directly for the first time that inhibition of protein translation protects extant proteins from damage brought about by an environmental stressor, demonstrate important differences in aging- versus stress-induced protein damage, and challenge the widely held view that chemical chaperones are accumulated during hypertonic stress to protect protein structure/function

    Identification of diagnostic serum protein profiles of glioblastoma patients

    Get PDF
    Diagnosis of a glioblastoma (GBM) is triggered by the onset of symptoms and is based on cerebral imaging and histological examination. Serum-based biomarkers may support detection of GBM. Here, we explored serum protein concentrations of GBM patients and used data mining to explore profiles of biomarkers and determine whether these are associated with the clinical status of the patients. Gene and protein expression data for astrocytoma and GBM were used to identify secreted proteins differently expressed in tumors and in normal brain tissues. Tumor expression and serum concentrations of 14 candidate proteins were analyzed for 23 GBM patients and nine healthy subjects. Data-mining methods involving all 14 proteins were used as an initial evaluation step to find clinically informative profiles. Data mining identified a serum protein profile formed by BMP2, HSP70, and CXCL10 that enabled correct assignment to the GBM group with specificity and sensitivity of 89 and 96%, respectively (p < 0.0001, Fischer’s exact test). Survival for more than 15 months after tumor resection was associated with a profile formed by TSP1, HSP70, and IGFBP3, enabling correct assignment in all cases (p < 0.0001, Fischer’s exact test). No correlation was found with tumor size or age of the patient. This study shows that robust serum profiles for GBM may be identified by data mining on the basis of a relatively small study cohort. Profiles of more than one biomarker enable more specific assignment to the GBM and survival group than those based on single proteins, confirming earlier attempts to correlate single markers with cancer. These conceptual findings will be a basis for validation in a larger sample size

    Vaccine Potential of Nipah Virus-Like Particles

    Get PDF
    Nipah virus (NiV) was first recognized in 1998 in a zoonotic disease outbreak associated with highly lethal febrile encephalitis in humans and a predominantly respiratory disease in pigs. Periodic deadly outbreaks, documentation of person-to-person transmission, and the potential of this virus as an agent of agroterror reinforce the need for effective means of therapy and prevention. In this report, we describe the vaccine potential of NiV virus-like particles (NiV VLPs) composed of three NiV proteins G, F and M. Co-expression of these proteins under optimized conditions resulted in quantifiable amounts of VLPs with many virus-like/vaccine desirable properties including some not previously described for VLPs of any paramyxovirus: The particles were fusogenic, inducing syncytia formation; PCR array analysis showed NiV VLP-induced activation of innate immune defense pathways; the surface structure of NiV VLPs imaged by cryoelectron microscopy was dense, ordered, and repetitive, and consistent with similarly derived structure of paramyxovirus measles virus. The VLPs were composed of all the three viral proteins as designed, and their intracellular processing also appeared similar to NiV virions. The size, morphology and surface composition of the VLPs were consistent with the parental virus, and importantly, they retained their antigenic potential. Finally, these particles, formulated without adjuvant, were able to induce neutralizing antibody response in Balb/c mice. These findings indicate vaccine potential of these particles and will be the basis for undertaking future protective efficacy studies in animal models of NiV disease

    Primaquine in vivax malaria: an update and review on management issues

    Get PDF
    Primaquine was officially licensed as an anti-malarial drug by the FDA in 1952. It has remained the only FDA licensed drug capable of clearing the intra-hepatic schizonts and hypnozoites of Plasmodium vivax. This update and review focuses on five major aspects of primaquine use in treatment of vivax malaria, namely: a) evidence of efficacy of primaquine for its current indications; b) potential hazards of its widespread use, c) critical analysis of reported resistance against primaquine containing regimens; d) evidence for combining primaquine with artemisinins in areas of chloroquine resistance; and e) the potential for replacement of primaquine with newer drugs

    HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics
    corecore